
1

Using Iperf

Jon M. Dugan
<jdugan@es.net>

NANOG 43, Brooklyn, NY
June 1, 2008

Energy Sciences Network
Lawrence Berkeley National Laboratory

Networking for the Future of Science

2

Outline
• TCP Measurements

• UDP Measurements

• Useful tricks

3

Iperf’s notion of clients and servers

Client is the sender

Server is the receiver
(discard server)

4

TCP Measurements
• Measures TCP Achievable Bandwidth
– Measurement includes the end system
– Sometimes called “memory-to-memory” tests

• Limits of what we can measure
– TCP is a largely a black box

• Many things can limit TCP throughput
– Loss
– Congestion
– Buffer Starvation
– Out of order delivery

5

Example Iperf TCP Invocation
Server (receiver):
$ iperf -s

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

--

[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60830

[4] 0.0-10.0 sec 1.09 GBytes 933 Mbits/sec

[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60831

[4] 0.0-10.0 sec 1.08 GBytes 931 Mbits/sec

Client (sender):
$ iperf -c 10.0.1.5
--

Client connecting to 10.0.1.5, TCP port 5001

TCP window size: 129 KByte (default)

--

[3] local 10.0.1.10 port 60830 connected with 10.0.1.5 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.2 sec 1.09 GBytes 913 Mbits/sec

6

Bandwidth Delay Product
• The amount of “in flight” data allowed for a TCP

connection

• BDP = bandwidth * round trip time

• Example: 1Gb/s cross country, ~100ms

1,000,000,000 b/s * .1 s = 100,000,000 bits

100,000,000 / 8 = 12,500,000 bytes

12,500,000 bytes / (1024*1024) ~ 12MB

• To get full TCP performance the TCP window needs to be
large enough to accommodate the Bandwidth Delay
Product

7

UDP Measurements
• UDP provides greater transparency

• We can directly measure some additional things:
– Loss
– Jitter
– Out of order delivery

8

Example Iperf UDP Invocation
Server (receiver):
$ iperf -u -s

--

Server listening on UDP port 5001

Receiving 1470 byte datagrams

UDP buffer size: 107 KByte (default)

--

[3] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 65299

[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.008 ms 0/ 893 (0%)

Client (sender):
$ iperf -u -c 10.0.1.5 -b 1M

--

Client connecting to 10.0.1.5, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 9.00 KByte (default)

--

[3] local 10.0.1.10 port 65300 connected with 10.0.1.5 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec

[3] Server Report:

[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.003 ms 0/ 893 (0%)

[3] Sent 893 datagrams

9

Adjusting Iperf for performance
• The –w option for Iperf can be used to request a particular

buffer size. This sets both send and receive buffer size.
– The OS may need to be tweaked to allow buffers of sufficient

size.
– See http://dsd.lbl.gov/TCP-tuning/ and

http://www.psc.edu/networking/perf_tune.html

• Parallel transfers may help as well, the –P option can be
used for this

10

Useful Iperf Invocations
• UDP and TCP:

• -i n report status every n seconds
• -d do bidirectional test simultaneously
• -r do bidirectional test one after another

11

Using Iperf to generate high rate streams
• UDP doesn’t require a receiver

• If you have good counters on your switches & routers
those can be used to measure

• Turns out UDP reception can be very resource intensive
resulting in drops at the NIC at high rates (8-9 Gb/s)

12

Never do this
• Need to generate 10 Gb/s but only have a 1 Gb/s host?

Iperf UDP
1 Gb/s

Destined for
10.1.1.1

Use the –T option to Iperf to control
the number of times the traffic loops

Can also use firewall filters to discard a certain TTL range.
Other filters may be prudent as well.

10.0.1.1 10.0.1.2

Static route:
10.1.1.1/32 10.0.1.2

Static route:
10.1.1.1/32 10.0.1.1

13

Iperf Development
• Primarily in maintenance mode
– Accepting and apply patches
– Fixing bugs and documentation as time allows

• Future Directions
– libiperf

14

More Information

http://iperf.sourceforge.net

iperf-users@lists.sourceforge.net

You can reach me at:

Jon Dugan <jdugan@es.net>

